The histone deacetylase Cfhos2 is a key epigenetic factor regulating appressorium development and pathogenesis in apple Glomerella leaf spot fungus Colletotrichum fructicola

Author:

Cao Mengyu,Zhang Zhaohui,Tian Huanhuan,Yu Wei,Zhao Xuemei,Yang Wenrui,Zhang Rong,Sun Guangyu,Liang XiaofeiORCID

Abstract

AbstractGlomerella leaf spot (GLS) is a devastating fungal disease that damages the leaves and fruits and reduces tree vigor of apple (Malus domestica). The pathogen infection mechanism, however, remains elusive. Histone-modifying enzymes, which regulate eukaryotic chromatin conformation and gene expression, are key epigenetic factors controlling fungal development, virulence, and secondary metabolism. To dissect the epigenetic regulation of GLS pathogenesis, we characterized a histone deacetylase gene Cfhos2 in Colletotrichum fructicola, the causing agent of GLS. Cfhos2 deletion mutants were mildly reduced in vegetative growth rate, but almost lost pathogenicity on apple leaves. Cfhos2 deletion mutants induced strong plant defense responses manifested by epidermal cell browning, granulation, and distortion of pathogen invasive hyphae. The mutants also showed defect in appressorial development on cellophane, but not on parafilm or on apple leaf surface, suggesting that the defect in appressorial development is surface-dependent. RNA-seq based transcriptome analysis highlighted that Cfhos2 regulates secondary metabolism-related virulence genes during infection. Moreover, the expression of an apple defense-related F-box protein was strongly induced by infection with Cfhos2 deletion mutants. Taken together, we demonstrate that Cfhos2 is a key epigenetic factor regulating appressorium development, virulence gene expression, and GLS pathogenesis in C. fructicola. The results provide important information for understanding the virulence mechanisms of C. fructicola.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi

China Agriculture Research System of MOF and MARA

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biochemistry, Genetics and Molecular Biology (miscellaneous),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3