Measurements of cerebrospinal fluid production: a review of the limitations and advantages of current methodologies

Author:

Liu Guojun,Ladrón-de-Guevara Antonio,Izhiman Yara,Nedergaard Maiken,Du Ting

Abstract

AbstractCerebrospinal fluid (CSF) is an essential and critical component of the central nervous system (CNS). According to the concept of the “third circulation” originally proposed by Cushing, CSF is mainly produced by the choroid plexus and subsequently leaves the cerebral ventricles via the foramen of Magendie and Luschka. CSF then fills the subarachnoid space from whence it disperses to all parts of the CNS, including the forebrain and spinal cord. CSF provides buoyancy to the submerged brain, thus protecting it against mechanical injury. CSF is also transported via the glymphatic pathway to reach deep interstitial brain regions along perivascular channels; this CSF clearance pathway promotes transport of energy metabolites and signaling molecules, and the clearance of metabolic waste. In particular, CSF is now intensively studied as a carrier for the removal of proteins implicated in neurodegeneration, such as amyloid-β and tau. Despite this key function of CSF, there is little information about its production rate, the factors controlling CSF production, and the impact of diseases on CSF flux. Therefore, we consider it to be a matter of paramount importance to quantify better the rate of CSF production, thereby obtaining a better understanding of CSF dynamics. To this end, we now review the existing methods developed to measure CSF production, including invasive, noninvasive, direct, and indirect methods, and MRI-based techniques. Depending on the methodology, estimates of CSF production rates in a given species can extend over a ten-fold range. Throughout this review, we interrogate the technical details of CSF measurement methods and discuss the consequences of minor experimental modifications on estimates of production rate. Our aim is to highlight the gaps in our knowledge and inspire the development of more accurate, reproducible, and less invasive techniques for quantitation of CSF production.

Funder

the National Institute of Neurological Disorders and Stroke grant

the National Institute on Aging

the US Army Research Office grant

Foundation Leducq Transatlantic Networks of Excellence Program

Novo Nordisk and Lundbeck Foundations

the EU Horizon 2020 research and innovation program grant

The European Research Council under the European Union’s Horizon 2020 research and innovation programme

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3