Proteomic alterations in the brain and blood–brain barrier during brain Aβ accumulation in an APP knock-in mouse model of Alzheimer’s disease

Author:

Ito Shingo,Yagi Ryotaro,Ogata Seiryo,Masuda Takeshi,Saito Takashi,Saido Takaomi,Ohtsuki Sumio

Abstract

Abstract Background Blood–brain barrier (BBB) dysfunction is supposed to be an early event in the development of Alzheimer’s disease (AD). This study aimed to investigate the relationship between BBB alterations and AD progression in terms of amyloid-β peptide (Aβ) accumulation in the brains of humanized amyloid precursor protein knock-in (APP-KI) mice. Methods Brain Aβ accumulation was examined using immunohistochemical analysis. Alterations in differentially expressed proteins were determined using sequential window acquisition of all theoretical fragment ion mass spectroscopy (SWATH-MS)-based quantitative proteomics, and Metascape, STRING, Gene Ontology, and KEGG were used for network analyses of altered biological pathways and processes. Statistical significance was determined using the unpaired two-tailed Student’s t-test and Welch’s t-test for two groups and one-way analysis of variance followed by Tukey’s test for more than two groups. Correlations between two groups were determined using Pearson’s correlation analysis. Results Brain Aβ accumulation in APP-KI mice was detectable at 2 months, increased significantly at 5 months, and remained elevated at 12 months of age. The levels of differentially expressed proteins in isolated brain capillaries were higher in younger mice, whereas those in the brain were higher in older mice. Network analyses indicated changes in basement membrane-associated and ribosomal proteins in the brain capillaries. There were no significant changes in key proteins involved in drug or Aβ transport at the BBB. In contrast, solute carrier transporter levels in astrocytes, microglia, and neurons were altered in the brain of older mice. Moreover, the levels of the lipid transporters Apoe and Apoj were upregulated in both the brain and isolated brain capillaries after Aβ accumulation. Conclusions Our results suggest that changes in the brain occurred after advanced Aβ accumulation, whereas initial Aβ accumulation was sufficient to cause alterations in the BBB. These findings may help elucidate the role of BBB alterations in AD progression and predict the distribution of drugs across the BBB in the brain of patients with AD.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3