Carbon Dots as New Generation Materials for Nanothermometer: Review

Author:

Mohammed Lazo Jazaa,Omer Khalid M.ORCID

Abstract

AbstractHighly sensitive non-contact mode temperature sensing is substantial for studying fundamental chemical reactions, biological processes, and applications in medical diagnostics. Nanoscale-based thermometers are guaranteeing non-invasive probes for sensitive and precise temperature sensing with subcellular resolution. Fluorescence-based temperature sensors have shown great capacity since they operate as “non-contact” mode and offer the dual functions of cellular imaging and sensing the temperature at the molecular level. Advancements in nanomaterials and nanotechnology have led to the development of novel sensors, such as nanothermometers (novel temperature-sensing materials with a high spatial resolution at the nanoscale). Such nanothermometers have been developed using different platforms such as fluorescent proteins, organic compounds, metal nanoparticles, rare-earth-doped nanoparticles, and semiconductor quantum dots. Carbon dots (CDs) have attracted interest in many research fields because of outstanding properties such as strong fluorescence, photobleaching resistance, chemical stability, low-cost precursors, low toxicity, and biocompatibility. Recent reports showed the thermal-sensing behavior of some CDs that make them an alternative to other nanomaterials-based thermometers. This kind of luminescent-based thermometer is promising for nanocavity temperature sensing and thermal mapping to grasp a better understanding of biological processes. With CDs still in its early stages as nanoscale-based material for thermal sensing, in this review, we provide a comprehensive understanding of this novel nanothermometer, methods of functionalization to enhance thermal sensitivity and resolution, and mechanism of the thermal sensing behavior.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3