Development of solid lipid nanoparticles-loaded drugs in parasitic diseases

Author:

Nemati Sara,Mottaghi Mahsa,Karami Parisa,Mirjalali Hamed

Abstract

AbstractParasites cause illnesses with broad spectrum of symptoms from mild to severe, and are responsible for a significant number of outbreaks in the world. Current anti-parasitic drugs are toxic and have significant side effects. Nano-carriers are believed to obviate the limitations of conventional drugs via decreasing side effects and increasing target delivery and drug permeability with a controlled prolonged release of a drug. Solid lipid nanoparticles (SLNs) are lipid nanoparticles (LNPs), which have frequently been practiced. Suitable release rate, stability, and target delivery make SLNs a good alternative for colloidal carriers. SLNs are supposed to have great potential to deliver natural products with anti-parasitic properties. Nanoparticles have employed to improve stability and capacity loading of SLNs, during recent years. This review describes development of SLNs, the methods of preparation, characterization, and loaded drugs into SLNs in parasitic diseases. In addition, we summarize recent development in anti-parasitic SLNs-loaded drugs.

Funder

Shahid Beheshti University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3