Review of sustainable, eco-friendly, and conductive polymer nanocomposites for electronic and thermal applications: current status and future prospects

Author:

Tamjid Elnaz,Najafi Parvin,Khalili Mohammad Amin,Shokouhnejad Negar,Karimi Mahsa,Sepahdoost Nafise

Abstract

AbstractBiodegradable polymer nanocomposites (BPNCs) are advanced materials that have gained significant attention over the past 20 years due to their advantages over conventional polymers. BPNCs are eco-friendly, cost-effective, contamination-resistant, and tailorable for specific applications. Nevertheless, their usage is limited due to their unsatisfactory physical and mechanical properties. To improve these properties, nanofillers are incorporated into natural polymer matrices, to enhance mechanical durability, biodegradability, electrical conductivity, dielectric, and thermal properties. Despite the significant advances in the development of BPNCs over the last decades, our understanding of their dielectric, thermal, and electrical conductivity is still far from complete. This review paper aims to provide comprehensive insights into the fundamental principles behind these properties, the main synthesis, and characterization methods, and their functionality and performance. Moreover, the role of nanofillers in strength, permeability, thermal stability, biodegradability, heat transport, and electrical conductivity is discussed. Additionally, the paper explores the applications, challenges, and opportunities of BPNCs for electronic devices, thermal management, and food packaging. Finally, this paper highlights the benefits of BPNCs as biodegradable and biodecomposable functional materials to replace traditional plastics. Finally, the contemporary industrial advances based on an overview of the main stakeholders and recently commercialized products are addressed.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3