Identification of potential biomarkers of myopia based on machine learning algorithms

Author:

Zhang Shengnan,Wang Tao,Wang Huaihua,Gao Bingfang,Sun Chao

Abstract

Abstract Purpose This study aims to identify potential myopia biomarkers using machine learning algorithms, enhancing myopia diagnosis and prognosis prediction. Methods GSE112155 and GSE15163 datasets from the GEO database were analyzed. We used “limma” for differential expression analysis and “GO plot” and “clusterProfiler” for functional and pathway enrichment analyses. The LASSO and SVM-RFE algorithms were employed to screen myopia-related biomarkers, followed by ROC curve analysis for diagnostic performance evaluation. Single-gene GSEA enrichment analysis was executed using GSEA 4.1.0. Results The functional analysis of differentially expressed genes indicated their role in carbohydrate generation and polysaccharide synthesis. We identified 23 differentially expressed genes associated with myopia, four of which were highly effective diagnostic biomarkers. Single gene GSEA results showed these genes control the ubiquitin-mediated protein hydrolysis pathway. Conclusion Our study identifies four key myopia biomarkers, providing a foundation for future clinical and experimental validation studies.

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3