Author:
Miao Ao,Tang Yating,Zhu Xiangjia,Qian Dongjin,Zheng Tianyu,Lu Yi
Abstract
Abstract
Background
To investigate the associations between anterior segment biometry and high axial myopia in cataractous eyes in the Chinese population.
Methods
Data on 3438 eyes from 3438 subjects were analyzed in this cross-sectional study. Anterior segment biometry, axial length measurements, and intraocular pressure evaluation were implemented using an Oculus Pentacam HR, a Zeiss IOLMaster 500, and a Nidek TonoRef II, respectively. A multivariate-adjusted logistic model and a multivariate-adjusted linear model were used for statistical analysis.
Results
The mean age of the subjects was 62.2 ± 10.6 years, and 56.4% were female. There were 2665 subjects with high axial myopia (axial length, ≥26.50 mm) and 773 without (axial length, < 26.50 mm). The characteristics independently associated with high axial myopia included lower total corneal refractive power, a more negative Q value, greater total corneal astigmatism, greater white-to-white corneal diameter, greater anterior chamber depth, and higher intraocular pressure (all P < 0.05). In addition, greater axial length correlated with a thicker temporal cornea and a thinner nasal cornea (both P < 0.001).
Conclusions
For cataractous eyes, high axial myopia was associated with corneal flattening, increased total corneal astigmatism, anterior segment enlargement, and intraocular pressure elevation. The findings may inform the choice of intraocular lenses and the calculation of their power, help improve the surgical practice of refractive cataract procedures, and provide useful information on the centration and stability of intraocular lenses.
Publisher
Springer Science and Business Media LLC
Subject
Ophthalmology,General Medicine
Reference41 articles.
1. Chong EW, Mehta JS. High myopia and cataract surgery. Curr Opin Ophthalmol. 2016;27(1):45–50.
2. Darcy K, Gunn D, Tavassoli S, Sparrow J, Kane JX. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service. J Cataract Refract Surg. 2020;46(1):2–7.
3. Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular Lens calculation formulas. Ophthalmology. 2018;125(2):169–78.
4. Savini G, Hoffer KJ, Barboni P. Influence of corneal asphericity on the refractive outcome of intraocular lens implantation in cataract surgery. J Cataract Refract Surg. 2015;41(4):785–9.
5. Kim JH, Lee D, Cha YD, Oh SH, Mah KC, Lee MS. The analysis of predicted capsular bag diameter using modified model of capsule measuring ring in Asians. Clin Exp Ophthalmol. 2008;36(3):238–44.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献