Abstract
AbstractWorldwide, millets are regarded as a significant grain, however, they are the least exploited. Millet grain is abundant in nutrients and health-beneficial phenolic compounds, making it suitable as food and feed. The diverse content of nutrients and phenolic compounds present in finger and pearl millet are good indicators that the variety of millet available is important when selecting it for use as food or feed. The phenolic properties found in millets compromise phenolic acids, flavonoids, and tannins, which are beneficial to human health. Moreover, finger millet has an exceptionally unique, more abundant, and diverse phenolic profile compared to pearl millet. Research has shown that millet phenolic properties have high antioxidant activity. The presence of phytochemicals in millet grains has positive effect on human health by lowering the cholesterol and phytates in the body. The frantic demands on maize and its uses in multiple industries have merited the search for alternative grains, to ease the pressure. Substitution of maize with pearl and finger millets in the diets of different animals resulted in positive impact on the performance. Including these grains in the diet may improve health and decrease the risks of diseases. Pearl millet of 50% or more can be used in broiler diets without adversely affecting broiler performance or egg production. Of late, millet grain has been incorporated in other foods and used to make traditional beverages. Thus, the core aim of this review is to provide insight and comprehension about the nutritional and phenolic status of millets and their impact on human and livestock.
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Ecology,Food Science
Reference132 articles.
1. Gari J A. Review of the African millet diversity Paper for the International workshop on fonio, food security and livelihood among the rural poor in West Africa; 2002. http://www.ipgri.org. Accessed 24 Mar 2020.
2. FAO (food and agriculture organization). World food situation; 2017. http://www.fao.org/worldfoodsituation/csdb/en/. Accessed 25 Feb 2020.
3. Dube T, Mlilo C, Moyo P, Ncube C, Phiri K. Will adaptation carry the future? Questioning the long-term capacity of smallholder farmers’ adaptation strategies against climate change in Gwanda District. Zimbabwe J Hum Ecol. 2018;61(1–3):20–30.
4. Sharma KK, Ortiz R. Program for the application of genetic transformation for crop improvement in the semi-arid tropics. In Vitro Cell Dev Biol Plant. 2000;36:83–92.
5. FAOSTAT. 2014. FAO statistical yearbook. FAO, Rome. http://www.fao.org/3/a-i3590e.pdf. Accessed 12 Feb 2020.
Cited by
140 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献