Canine sperm motility is associated with telomere shortening and changes in expression of shelterin genes

Author:

Hassanpour Hossein,Mirshokraei Pezhman,Salehpour Marzieh,Amiri Khadije,Ghareghani Parvin,Nasiri Leila

Abstract

Abstract Background Motion quality is a critical property for essential functions. Several endogenous and exogenous factors are involved in sperm motility. Here, we measured the relative telomere length and evaluated the gene expression of its binding-proteins, shelterin complex (TRF1, TRF2, RAP1, POT1, TIN2, and TPP1) in sperm of dogs using relative quantitative real-time PCR. We compared them between two sperm subpopulations with poor and good motion qualities (separated by swim-up method). Telomere shortening and alterations of shelterin gene expression result from ROS, genotoxic insults, and genetic predisposition. Results Sperm kinematic parameters were measured in two subpopulations and then telomeric index of each parameter was calculated. Telomeric index for linearity, VSL, VCL, STR, BCF, and ALH were significantly higher in sperms with good motion quality than in sperms with poor quality. We demonstrated that poor motion quality is associated with shorter telomere, higher expression of TRF2, POT1, and TIN2 genes, and lower expression of the RAP1 gene in dog sperm. The levels of TRF1 and TPP1 gene expression remained consistent despite variations in sperm quality and telomere length. Conclusion Data provided evidence that there are considerable changes in gene expression of many shelterin components (TRF2, TIN2, POT1and RAP1) associated with shortening telomere in the spermatozoa with poor motion quality. Possibly, the poor motion quality is the result of defects in the shelterin complex and telomere length. Our data suggests a new approach in the semen assessment and etiologic investigations of subfertility or infertility in male animals.

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3