Regulation of epithelial-mesenchymal transition in retinal pigment epithelium and its associated cellular signaling cascades: an updated review

Author:

Gelat BrijeshORCID,Malaviya Pooja,Rathaur Pooja,Trivedi Krupali,Chaudhary Priya,Patel Binita,Johar Kaid,Gelat Rahul

Abstract

Abstract Background The epithelial-mesenchymal transition (EMT) affects the retinal pigment epithelium's natural homeostasis. According to observations from around the world, numerous oculopathies, including proliferative vitreoretinopathy (PVR), diabetic retinopathy (DR), and other macular degenerative illnesses such as age-related macular degeneration (AMD), have been linked to the epithelial-mesenchymal transition of retinal pigment epithelium (EMT of RPE). Retinopathy is referred to as an impairment in the retina, where AMD is characterized as an alteration in the macula region, DR as an impairment in the microvascular system, and PVR as an alteration in the subretinal bands, fibrovascular membranes, and fibrotic alteration in the detached retina. To find molecular targets and therapeutic drugs to protect and restore RPE function, a connection between EMT-related signaling pathways and RPE degeneration must be established. Main body of abstract Studies conducted in vivo and in vitro indicate that several signaling pathways, including the Rho pathway, the transforming growth factor-β (TGFβ) pathway, the Jagged/Notch pathway, mitogen-activated protein kinase (MAPK)-dependent pathway, and Wnt/β-catenin pathway, are activated in RPE cells during PVR and AMD. In order to discover the most suitable candidate for retinopathy therapies, it is necessary to determine the relationship between the regulators of the EMT and the degeneration of the RPE. To treat retinopathies, particularly those that are brought on by the EMT of retinal pigment epithelial cells, it is necessary to investigate prospective pharmaceutical candidates. Conclusion TGFβ's intracellular cascade, which comprises both canonical (SMAD-associated) and non-canonical (SMAD-nonassociated) pathways, is shown to be the most active signaling pathway in the degeneration of the RPE caused by EMT.

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Agricultural and Biological Sciences (miscellaneous),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3