METTL3 exacerbates insulin resistance in hepatocytes by regulating m6A modification of cytochrome P450 2B6

Author:

Li Yongqing,Zhang Dantong,Gao Yinan,Wang Peijun,Wang Zejun,Zhang Bingyang,Liu Junjun,Ye Diwen,Ma Wanshan,Lu Sumei

Abstract

Abstract Background Insulin resistance (IR) in hepatocytes endangers human health, and frequently results in the development of non-alcoholic fatty liver disease (NAFLD). Research on m6A methylation of RNA molecules has gained popularity in recent years; however, the molecular mechanisms regulating the processes of m6A modification and IR are not known. The cytochrome P450 (CYP450) enzyme system, which is mainly found in the liver, is associated with the pathogenesis of NAFLD. However, few studies have been conducted on CYP450 related m6A methylation. Here, we investigated the role of the methyltransferase METTL3 in exacerbating IR in hepatocytes, mainly focusing on the regulation of m6A modifications in CYP2B6. Methods and results Analysis using dot blot and epitranscriptomic chips revealed that the m6A modification pattern of the transcriptome in high-fat diet (HFD)-induced fatty liver and free fatty acid (FFA)-induced fatty hepatocytes showed significant changes. CYP450 family members, especially Cyp2b10, whose homolog in humans is CYP2B6, led to a noticeable increase in m6A levels in HFD-induced mice livers. Application of the METTL3 methyltransferase inhibitor, STM2457, increased the level of insulin sensitivity in hepatocytes. We then analyzed the role of METTL3 in regulating m6A modification of CYP2B6 in hepatocytes. METTL3 regulated the m6A modification of CYP2B6, and a positive correlation was found between the levels of CYP2B6 translation and m6A modifications. Furthermore, interference with METTL3 expression and exposure to STM2457 inhibited METTL3 activity, which in turn interfered with the phosphorylated insulin receptor substrate (pIRS)-glucose transporter 2 (GLUT2) insulin signaling pathway; overexpression of CYP2B6 hindered IRS phosphorylation and translocation of GLUT2 to membranes, which ultimately exacerbated IR. Conclusion These findings offer unique insights into the role that METTL3-mediated m6A modifications of CYP2B6 play in regulating insulin sensitivity in hepatocytes and provide key information for the development of strategies to induce m6A modifications for the clinical treatment of NAFLD.

Funder

Natural Science Foundation of Shandong Province, China

Shandong First Medical University Youth Science Foundation Cultivation Support Program

Publisher

Springer Science and Business Media LLC

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3