Isoforskolin modulates AQP4-SPP1-PIK3C3 related pathway for chronic obstructive pulmonary disease via cAMP signaling

Author:

Lin HaochangORCID,Cheng Sha,Yang Songye,Zhang Qian,Wang Lueli,Li Jiangya,Zhang Xinyue,Liang Liju,Zhou Xiaoqian,Yang Furong,Song Jingfeng,Cao Xue,Yang Weimin,Weng Zhiying

Abstract

Abstract Background Cyclic adenosine monophosphate (cAMP) levels are directly activated by adenylate cyclase (AC) and play an anti-inflammatory role in chronic obstructive pulmonary disease (COPD). Previously, we have shown that isoforskolin (ISOF) can effectively activate AC1 and AC2 in vitro, improve pulmonary ventilation and reduce the inflammatory response in COPD model rats, supporting that ISOF may be a potential drug for the prevention and treatment of COPD, but the mechanism has not been explored in detail. Methods The potential pharmacological mechanisms of ISOF against COPD were analyzed by network pharmacology and multi-omics based on pharmacodynamic study. To use specific agonists, inhibitors and/or SiRNA for gene regulation function studies, combined qPCR, WB were applied to detect changes in mRNA and protein expression of important targets PIK3C3, AKT, mTOR, SPP1 and AQP4 which related to ISOF effect on COPD. And the key inflammatory factors detected by ELISA. Results Bioinformatics suggested that the anti-COPD pharmacological mechanism of ISOF was related to PI3K-AKT signaling pathway, and suggested target protein like PIK3C3, AQP4, SPP1, AKT, mTOR. Using the AQP4 inhibitor,or inhibiting SPP1 expression by siRNA-SPP1 could block the PIK3C3-AKT-mTOR pathway and ameliorate chronic inflammation. ISOF showed cAMP-promoting effect then suppressed AQP4 expression, together with decreased level of IL-1β, IL-6, and IL-8. Conclusions These findings demonstrate ISOF controlled the cAMP-regulated PIK3C3-AKT-mTOR pathway, thereby alleviating inflammatory development in COPD. The cAMP/AQP4/PIK3C3 axis also modulate Th17/Treg differentiation, revealed potential therapeutic targets for this disease.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Kunming Medical University Innovation Fundation

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3