Biogas potential and methanogenic community shift in in-situ anaerobic sewage sludge digestion with food waste leachate additions

Author:

Bae Ji Su,Yoon Yeo Myung,Shin Seon Kyoung,Lee Dong Jin,Seo Dong Cheol

Abstract

AbstractThe objective of this study was to determine methane yields (MY) of organic wastes in biogasification facilities according to the mixing ratio of food waste/food waste leachate and sewage sludge. One biogasification facility that treated sewage sludge only was compared with three biogasification facilities treating sewage sludge and food waste. The theoretical MY was derived based on analyses of carbohydrate, fat, and protein to examine the efficiency of the biogasification facility. The average actual MY was 0.424 Sm3CH4/kg volatile solids, which corresponded to 83.7% of theoretical MY. In the case of combined anaerobic digestion (CD) mixing with food waste/food waste leachate, inhibitory factors (volatile fatty acids [VFAs], total nitrogen [TN], and organic matter contents) showed the tendency to have relatively higher values in CD facilities than in the biogasification facility treating sewage sludge only. Mean concentrations of VFAs and TN in the anaerobic digester effluent, and the organic loading rate were 406 mg/L, 3,721 mg/L, and 1.62 kg volatile solids/m3 day, respectively. The influence of anaerobic digester effluent was in charge of 10% within the influent environmental loading rate from the sewage treatment plants associated with the biogasification facilities. Analyses of the microbial community showed that a remarkable change in the structure of methanogens was directly related to different MY in each plant. In particular, Methanoculleus and Methanosaeta increased with an increasing ratio of food waste/food waste leachate to sludge, while Methanococcus and Methanosarcina decreased. In conclusion, CD showed steady operational conditions and high efficiency of MY by injecting food waste/food waste leachate into the anaerobic digester. It met the current criteria for integrated treatment of organic waste in biogasification facilities in South Korea.

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

Reference35 articles.

1. Korea Ministry of Environment (2014) A study on the co-digestion of sewage sludge and manure

2. Korea Ministry of Environment (2015) 2014 Status of waste generation and disposal in South Korea

3. Korea Ministry of Environment (2015) 2014 Sewage statistics

4. Lee JM, Lee KY, Yoo YS (2013) Ocean dumping prohibition of waste and future task. Gyeonggi Research Institute 80:1–20

5. Lee JM, Lee KY, So HJ (2012) A study on waste management for prohibiting ocean dumping. Gyeonggi Res Inst. 11:1–138

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3