Reduction of ammonia gas by microbial agent treatment in Chinese cabbage cultivation

Author:

Park Jong-Hwan,Lee Su-Lim,Lee Jae-Hoon,Rho Jun-Suk,Lee Jeong-Min,Kim Seong-Heon,Kang Se-Won,Seo Dong-Cheol

Abstract

AbstractThis study aimed to select the optimal microbial agents for ammonia gas reduction in Chinese cabbage cultivation and evaluate their ammonia reduction efficiency. By selecting the optimum microorganism to reduce ammonia emissions, the ammonia emission reduction efficiencies of the nitrification microorganisms, Alcaligenes faecalis subsp. faecalis and Brevibacillus sp. were 21 and 31%, respectively, which were superior to those of other microorganisms. The best ammonia emission reduction efficiency of the acid-producing microorganisms was 55%. The optimum mixing ratio of microbial agent for removing ammonia gas emitted from NPK-containing soil was: acid-producing microorganism:Alcaligenes faecalis subsp. faecalis:Brevibaillus sp. = 0.70:0.15:0.15. The optimum treatment amount was 500 L/ha, and the optimum number of microbial agents was basal fertilization (also known as pre-planting fertilization) once and additional fertilization three times, for a total of four times. The reduction efficiency of ammonia emissions from NPK-containing soil under optimum conditions in cabbage cultivation was 27% lower than that of the control (only NPK-containing soil). Therefore, the microbial agent developed in this study can be utilized to effectively reduce the emission of ammonia, a secondary fine particle precursor, while maintaining crop yield in agricultural fields.

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3