Orlistat, a competitive lipase inhibitor used as an antiobesity remedy, enhances inflammatory reactions in the intestine

Author:

Katimbwa Dorsilla Anono,Oh Jisun,Jang Chan Ho,Lim JinkyuORCID

Abstract

AbstractAlterations in secondary gut metabolites derived from the microbial fermentation of food in the gut have significant effects on various aspects of host physiology. Our recent studies on obese mice treated with Orlistat, an antiobesity treatment, revealed a significantly altered gut microbial profile marked by an over-abundance of Proteobacteria and alterations in secondary gut metabolites. In this study, we determined effect of fecal metabolites from high-fat diet fed mice treated with Orlistat (HFDOrl) on colonic epithelial cells in relation to inflammation, barrier function, mitochondrial activity, reactive oxygen species (ROS) levels, and oxidative stress. Quantitative PCR was used to measure intestinal mRNA expression of oxidative stress, inflammation, apoptosis, and gut barrier function genes in mice on a high fat diet with and without Orlistat treatment versus those fed a low-fat diet (HFDOrl, HFD, Normal diet-fed [ND] respectively). Alterations to antioxidant function in HCT-116-ARE-luciferase stable cell line and mitochondrial function in Caco-2 cells was analyzed under oxidative stress with exposure to aqueous fecal extracts from HFDOrl, HFD, and ND groups. The results of this study indicate that a significant increase in anti-oxidative response was observed based on the luciferase activity of HCT-116-ARE-luciferase stable cells. Increased maximal respiration and mitochondrial ROS under oxidative stress was also detected in confluent Caco-2 cells resulting from exposure to fecal extracts from the HFDOrl group compared with the HFD group and pure Orlistat. Furthermore, mice from the HFDOrl group exhibited a significant increase in colonic epithelial expression of oxidative markers (Nrf-2 and SOD-2), inflammation-related markers (IL-6 and TNF-α), and gut barrier function markers (Muc-2 and Occludin). Taken together, the results suggest that Orlistat treatment in the HFD group causes changes in secondary gut metabolites which affect the colonic redox state and may eventually lead to the development of inflammatory, oxidative, and mitochondrial dysfunction at the cellular level.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Organic Chemistry,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3