Anti-thrombotic effects of arteanoflavone by regulating cyclic nucleotides and aggregation on human platelets

Author:

Choi Ho Keun,Kim Ga Yeon,Lee Ga Hee,su Jang Hee,Kang Da Hyeon,Lee Jin Pyo,Lee Dong-HaORCID

Abstract

AbstractExcessive clotting or abnormal platelet accumulation can lead to serious cardiovascular disorders such as atherosclerosis, stroke, and thrombosis. Therefore, it is imperative to identify compounds capable of controlling or impeding platelet aggregation to prevent the onset of cardiovascular diseases. Arteanoflavone, a compound extracted from Artemisia iwayomogi, has not garnered scientific recognition for its potential health benefits, recent studies have substantiated its anti-inflammatory, antioxidant, and anti-allergic properties. However, the precise mechanisms by which arteanoflavone influences platelet aggregation and blood clot formation have not been conclusively established. This research investigates arteanoflavone’s role in these processes, particularly in platelets induced by collagen. The study reveals a significant increase in the production of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) correlating with the administered dosage of arteanoflavone. Concurrently, a noticeable escalation is observed in substrates of cAMP-dependent kinase and cGMP-dependent kinase, specifically VASP and inositol 1,4,5-trisphosphate receptor (IP3R).Arteanoflavone demonstrates its ability to limit Ca2+ movement in the dense tubular system through IP3R phosphorylation. Moreover, phosphorylated VASP inhibits the binding of fibrinogen to αIIb/β3, thus suppressing platelet activity. Arteanoflavone also stimulates the phosphorylation of PI3K/Akt, a protein linked to platelet granule release, and MAPK (ERK, JNK, and p38) protein, associated with both platelet granule release and TXA2 production.Lastly, arteanoflavone impedes collagen-induced platelet aggregation and blood clot formation by inhibiting fibrin production in thrombin-induced platelets. Hence, it is suggested that arteanoflavone could be valuable as an agent that effectively deters platelet inhibition and blood clot formation through antiplatelet mechanisms.

Funder

National Research Foundation of Korea Grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3