Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway

Author:

Zhao Cheng,Yang Zi-yi,Zhang Jian,Li Ou,Liu Shi-lei,Cai Chen,Shu Yi-jun,Pan Li-jia,Gong Wei,Dong PingORCID

Abstract

Abstract Background Gallbladder cancer (GBC) is a highly aggressive malignant cancer in the biliary system with poor prognosis. XPO1 (chromosome region maintenance 1 or CRM1) mediates the nuclear export of several proteins, mainly tumor suppressors. Thus, XPO1 functions as a pro-oncogenic factor. KPT-330 (Selinexor) is a United States Food and Drug Administration approved selective inhibitor of XPO1 that demonstrates good therapeutic effects in hematologic cancers. However, the function of XPO1 and the effect of KPT-330 have not been reported in GBC. Methods We analyzed the correlation between XPO1 expression levels by q-PCR and clinical features of GBC patients. Cell proliferation assays were used to analyze the in vitro antitumor effects of XPO1 inhibitor KPT-330. mRNA sequencing was used to explore the underlying mechanisms. Western blot was performed to explore the relationship between apoptosis and autophagy. The in vivo antitumor effect of KPT-330 was investigated in a nude mouse model of gallbladder cancer. Results We found that high expression of XPO1 was related to poor prognosis of GBC patients. We observed that XPO1 inhibitor KPT-330 inhibited the proliferation of GBC cells in vitro. Furthermore, XPO1 inhibitor KPT-330 induced apoptosis by reducing the mitochondrial membrane potential and triggering autophagy in NOZ and GBC-SD cells. Indeed, XPO1 inhibitor KPT-330 led to nuclear accumulation of p53 and activated the p53/mTOR pathway to regulate autophagy-dependent apoptosis. Importantly, KPT-330 suppressed tumor growth with no obvious toxic effects in vivo. Conclusion XPO1 may be a promising prognostic indicator for GBC, and KPT-330 appears to be a potential drug for treating GBC effectively and safely.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3