Identification of novel first-trimester serum biomarkers for early prediction of preeclampsia

Author:

Liu Mingxi,Niu Yue,Ma Kongyang,Leung Peter C. K.,Chen Zi-Jiang,Wei Daimin,Li YanORCID

Abstract

Abstract Background Preeclampsia (PE) is a leading cause of maternal and perinatal mortality and morbidity worldwide, but effective early prediction remains a challenge due to the lack of reliable biomarkers. Methods Based on the extensive human biobank of our large-scale assisted reproductive cohort platform, the first-trimester serum levels of 48 cytokines, total immunoglobulins (Igs), anti-phosphatidylserine (aPS) antibodies, and several previously reported PE biomarkers [including placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), and activin A] were measured in 34 women diagnosed with PE and 34 matched normotensive controls. Results The PE group has significantly higher first-trimester serum levels of interleukin (IL)-2Rα, IL-9, tumor necrosis factor-β (TNF-β), RANTES, hepatocyte growth factor (HGF), total IgM, and total IgG, and aPS IgG optical density (OD) value, as well as lower first-trimester serum levels of PlGF and total IgA and aPS-IgG immune complexes (IC) OD value than the control group. Combining top five first-trimester serum biomarkers (total IgM, total IgG, PlGF, aPS IgG, and total IgA) achieved superior predictive value [area under the curve (AUC) and 95% confidence interval (CI) 0.983 (0.952–1.000), with a sensitivity of 100% and a specificity of 94.1%] for PE development compared to PlGF and PlGF/sFlt-1 independently [AUC and 95% CI 0.825 (0.726–0.924) and 0.670 (0.539–0.800), respectively]. Conclusion We identified novel first-trimester serum biomarkers and developed an effective first-trimester prediction model using immune-related factors and PlGF for PE, which could facilitate the development of early diagnostic strategies and provide immunological insight into the further mechanistic exploration of PE.

Funder

National Key Research and Development Program of China

Basic Science Center Program of the National Natural Science Foundation of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Young Scholars Program of Shandong University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3