Aberrant KAT2A accumulations render TRIM22-low melanoma sensitive to Notch1 inhibitors via epigenetic reprogramming

Author:

Gu Xiaoli,Min Wei,Zeng Yibin,Fan Ni,Qian Qihong

Abstract

Abstract Background Aberrant ubiquitin-proteasome system (UPS) triggers various disorders of biological events and contributes to progression of tumorigenesis. The tripartite motif containing 22 (TRIM22) was demonstrated to participate in the progression of multiple malignancies. Nevertheless, the role of TRIM22 in melanoma is still indefinite. This project aims to investigate the biological function of TRIM22 in melanoma and provide novel therapeutical targets. Methods Bioinformatic algorithms were used to investigate prognostic significance of TRIM22. The in vitro or in vivo assays were used to explore the functions of TRIM22 in melanoma. The Co-Immunoprecipitation (Co-IP) and in vivo ubiquitination assays were used to assess regulations of TRIM22 on lysine acetyltransferase 2 A (KAT2A). The Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assay were utilized to explore epigenetic regulations of KAT2A on Notch1. Results Here, we utilized the bioinformatic methods to confirm that TRIM22 is decreased in melanoma than normal tissues. Patients with low TRIM22 levels had shorter survival months than those with high TRIM22 levels. Targeting TRIM22 favors melanoma cell migration, proliferation, and tumor development in vitro and in vivo. Mechanistically, TRIM22 interacts with KAT2A and promotes its degradation in a ubiquitination-dependent manner. Melanoma cells with TRIM22 deficiency depended on KAT2A to enhance malignant progression, including proliferation, migration, and in vivo growth. KEGG analysis determined the positive correlation between KAT2A and Notch signaling. Chromatin Immunoprecipitation (ChIP) assays implicated that KAT2A directly binds to the promoter region of Notch1 and mediates the enrichment of H3K9ac modification. KAT2A activates Notch1 transcriptional levels and sustains the stemness feature of melanoma cells. Nocth1 inhibitor (IMR-1) effectively suppresses the growth of TRIM22low melanoma in vitro and in vivo but fails to inhibit TRIM22high melanoma. Conclusion Together, our study illustrates the mechanism by which the TRIM22-KAT2A-Notch1 axis promotes melanoma progression, and demonstrates that KAT2A/Nocth1 confers an epigenetic vulnerability in TRIM22low melanoma.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3