MTFR2-dependent mitochondrial fission promotes HCC progression

Author:

Zhang La,Zhang Xiuzhen,Liu Haichuan,Yang Changhong,Yu Jiyao,Zhao Wei,Guo Jiao,Zhou Baoyong,Jiang NingORCID

Abstract

Abstract Background The role of mitochondrial dynamics, encompassing fission, fusion, and mitophagy, in cancer progression has been extensively studied. However, the specific impact of mitochondrial dynamics on hepatocellular carcinoma (HCC) is still under investigation. Methods In this study, mitochondrial dynamic genes were obtained from the MitoCarta 3.0 database, and gene expression data were collected from The Cancer Genome Atlas (TCGA) database. Based on the expression of these dynamic genes and differentially expressed genes (DEGs), patients were stratified into two clusters. Subsequently, a prognostic model was constructed using univariate COX regression and the least absolute shrinkage and selection operator (LASSO) regression, and the prognostic signature was evaluated. We analyzed the interaction between these model genes and dynamic genes to identify hub genes and reveal mitochondrial status. Furthermore, we assessed immune infiltration, tumor mutational burden (TMB), tumor stemness indices (TSI), and the response to immune checkpoint block (ICB) therapy using the TIDE algorithm and risk scores. Additionally, transmission electron microscopy (TEM), hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), western blotting (WB), and immunofluorescence (IF) were conducted to afford detailed visualization of the morphology of the mitochondria and the expression patterns of fission-associated proteins. Results Patients in Cluster 2 exhibited heightened mitochondrial fission and had a worse prognosis. The up-regulated dynamic genes in Cluster 2 were identified as fission genes. GO/KEGG analyses reconfirmed the connection of Cluster 2 to augmented mitochondrial fission activities. Subsequently, a ten-gene prognostic signature based on the differentially expressed genes between the two clusters was generated, with all ten genes being up-regulated in the high-risk group. Moreover, the potential links between these ten signature genes and mitochondrial dynamics were explored, suggesting their involvement in mediating mitochondrial fission through interaction with MTFR2. Further investigation revealed that the high-risk group had an unfavorable prognosis, with a higher mutation frequency of TP53, increased immune checkpoint expression, a higher TIS score, and a lower TIDE score. The mitochondrial imbalance characterized by increased fission and upregulated MTFR2 and DNM1L expression was substantiated in both HCC specimens and cell lines. Conclusions In conclusion, we developed a novel MTFR2-related prognostic signature comprising ten mitochondrial dynamics genes. These genes play crucial roles in mitochondrial fission and have the potential to serve as important predictors and therapeutic targets for HCC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3