Loss of miR-26b-5p promotes gastric cancer progression via miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop

Author:

Xu Tingting,Xie Mengyan,Jing Xinming,Jiang Huning,Wu Xi,Wang Xinzhu,Shu YongqianORCID

Abstract

Abstract Background Chronic inflammation is a well-known risk factor for the development of gastric cancer (GC). Nevertheless, the molecular mechanisms underlying inflammation-related GC progression are incompletely defined. Methods Bioinformatic analysis was performed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the expression of miR-26b-5p in GC cells and tissues was validated by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined through Cell Counting Kit-8 (CCK8), 5-Ethynyl-2’-deoxyuridine (EdU), colony formation, flow cytometry, and tumor xenografts. Correlation between miR-26b-5p and Cyclin dependent kinase 8 (CDK8) or Phosphodiesterase 4B (PDE4B) was analyzed by dual-luciferase reporter assays, qRT-PCR, and Western blot. The effect of miR-26b-5p on the Signal transducer and activator of transcription 3 (STAT3) pathway was investigated using Western blot, immunofluorescence (IF), and immunohistochemistry (IHC). The impact of STAT3 on miR-26b-5p was determined by dual-luciferase reporter assays and qRT-PCR. Results The expression of miR-26b-5p was significantly downregulated in Helicobacter Pylori (H. pylori)-infected GC cells. The decreased expression of miR-26b-5p was also detected in GC cells and tissues compared to normal gastric epithelium cells (GES1) and normal adjacent gastric tissues. The low expression of miR-26b-5p promoted GC proliferation in vitro and in vivo and was related to the poor outcome of GC patients. In terms of mechanism, miR-26b-5p directly targeted PDE4B and CDK8, resulting in decreased phosphorylation and nuclear translocation of STAT3, which was associated with the regulation of GC proliferation by miR-26b-5p. Notably, miR-26b-5p was transcriptionally suppressed by STAT3, thus forming the miR-26b-5p-PDE4B/CDK8-STAT3 positive feedback loop. Conclusion The newly identified miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop plays an important role in inflammation-related GC progression and may serve as a promising therapeutic target for GC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3