Metabolomic profiles of intact tissues reflect clinically relevant prostate cancer subtypes

Author:

Dudka Ilona,Lundquist Kristina,Wikström Pernilla,Bergh Anders,Gröbner GerhardORCID

Abstract

Abstract Background Prostate cancer (PC) is a heterogenous multifocal disease ranging from indolent to lethal states. For improved treatment-stratification, reliable approaches are needed to faithfully differentiate between high- and low-risk tumors and to predict therapy response at diagnosis. Methods A metabolomic approach based on high resolution magic angle spinning nuclear magnetic resonance (HR MAS NMR) analysis was applied on intact biopsies samples (n = 111) obtained from patients (n = 31) treated by prostatectomy, and combined with advanced multi- and univariate statistical analysis methods to identify metabolomic profiles reflecting tumor differentiation (Gleason scores and the International Society of Urological Pathology (ISUP) grade) and subtypes based on tumor immunoreactivity for Ki67 (cell proliferation) and prostate specific antigen (PSA, marker for androgen receptor activity). Results Validated metabolic profiles were obtained that clearly distinguished cancer tissues from benign prostate tissues. Subsequently, metabolic signatures were identified that further divided cancer tissues into two clinically relevant groups, namely ISUP Grade 2 (n = 29) and ISUP Grade 3 (n = 17) tumors. Furthermore, metabolic profiles associated with different tumor subtypes were identified. Tumors with low Ki67 and high PSA (subtype A, n = 21) displayed metabolite patterns significantly different from tumors with high Ki67 and low PSA (subtype B, n = 28). In total, seven metabolites; choline, peak for combined phosphocholine/glycerophosphocholine metabolites (PC + GPC), glycine, creatine, combined signal of glutamate/glutamine (Glx), taurine and lactate, showed significant alterations between PC subtypes A and B. Conclusions The metabolic profiles of intact biopsies obtained by our non-invasive HR MAS NMR approach together with advanced chemometric tools reliably identified PC and specifically differentiated highly aggressive tumors from less aggressive ones. Thus, this approach has proven the potential of exploiting cancer-specific metabolites in clinical settings for obtaining personalized treatment strategies in PC.

Funder

Vetenskapsrådet

Cancerfonden

Kempestiftelserna

Knut och Alice Wallenbergs Stiftelse

Science for Life Laboratory

Umeå Universitet

SwedNMR

Swedish National NMR Centre

Umea University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3