The role of TET2-mediated ROBO4 hypomethylation in the development of diabetic retinopathy

Author:

Zhao Liangliang,Xu Haitao,Liu Xin,Cheng Yan,Xie Jia’nanORCID

Abstract

Abstract Background In diabetic retinopathy, increasing evidence points to a link between the pathogenesis of retinal microangiopathy and the endothelial cell-specific factor roundabout4 (ROBO4). According to earlier research, specificity protein 1 (SP1) enhances the binding to the ROBO4 promoter, increasing Robo4 expression and hastening the progression of diabetic retinopathy. To determine if this is related to aberrant epigenetic modifications of ROBO4, we examined the methylation level of the ROBO4 promoter and the corresponding regulatory mechanism during the course of diabetic retinopathy and explored the effect of this mechanism on retinal vascular leakage and neovascularization. Methods The methylation level of CpG sites in the ROBO4 promoter was detected in human retinal endothelial cells (HRECs) cultured under hyperglycemic conditions and retinas from streptozotocin-induced diabetic mice. The effects of hyperglycemia on DNA methyltransferase 1, Tet methylcytosine dioxygenase 2 (TET2), 5-methylcytosine, 5-hydroxymethylcytosine, and the binding of TET2 and SP1 to the ROBO4 promoter, as well as the expression of ROBO4, zonula occludens 1 (ZO-1) and occludin were examined. Short hairpin RNA was used to suppress the expression of TET2 or ROBO4 and the structural and functional changes in the retinal microvascular system were assessed. Results In HRECs cultured under hyperglycemic conditions, the ROBO4 promoter methylation level decreased. Hyperglycemia-induced TET2 overexpression caused active demethylation of ROBO4 by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, which enhanced the binding of SP1 to ROBO4, increased the expression of ROBO4, and decreased the expression of ZO-1 and occludin, leading to the abnormalities in monolayer permeability, migratory ability and angiogenesis of HRECs. The above pathway was also demonstrated in the retinas of diabetic mice, which caused leakage from retinal capillaries and neovascularization. Inhibition of TET2 or ROBO4 expression significantly ameliorated the dysfunction of HRECs and retinal vascular abnormalities. Conclusions In diabetes, TET2 can regulate the expression of ROBO4 and its downstream proteins by mediating active demethylation of the ROBO4 promoter, which accelerates the development of retinal vasculopathy. These findings suggest that TET2-induced ROBO4 hypomethylation is a potential therapeutic target, and anti- TET2/ROBO4 therapy is anticipated to emerge as a novel strategy for early intervention and delayed progression of diabetic retinopathy.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3