Classification of tumor types using XGBoost machine learning model: a vector space transformation of genomic alterations

Author:

Zelli Veronica,Manno Andrea,Compagnoni Chiara,Ibraheem Rasheed Oyewole,Zazzeroni Francesca,Alesse Edoardo,Rossi Fabrizio,Arbib Claudio,Tessitore AlessandraORCID

Abstract

Abstract Background Machine learning (ML) represents a powerful tool to capture relationships between molecular alterations and cancer types and to extract biological information. Here, we developed a plain ML model aimed at distinguishing cancer types based on genetic lesions, providing an additional tool to improve cancer diagnosis, particularly for tumors of unknown origin. Methods TCGA data from 9,927 samples spanning 32 different cancer types were downloaded from cBioportal. A vector space model type data transformation technique was designed to build consistently homogeneous new datasets containing, as predictive features, calls for somatic point mutations and copy number variations at chromosome arm-level, thus allowing the use of the XGBoost classifier models. Considering the imbalance in the dataset, due to large difference in the number of cases for each tumor, two preprocessing strategies were considered: i) setting a percentage cut-off threshold to remove less represented cancer types, ii) dividing cancer types into different groups based on biological criteria and training a specific XGBoost model for each of them. The performance of all trained models was mainly assessed by the out-of-sample balanced accuracy (BACC) and the AUC scores. Results The XGBoost classifier achieved the best performance (BACC 77%; AUC 97%) on a dataset containing the 10 most represented tumor types. Moreover, dividing the 18 most represented cancers into three different groups (endocrine-related carcinomas, other carcinomas and other cancers),such analysis models achieved 78%, 71% and 86% BACC, respectively, with AUC scores greater than 96%. In addition, the model capable of linking each group to a specific cancer type reached 81% BACC and 94% AUC. Overall, the diagnostic potential of our model was comparable/higher with respect to others already described in literature and based on similar molecular data and ML approaches. Conclusions A boosted ML approach able to accurately discriminate different cancer types was developed. The methodology builds datasets simpler and more interpretable than the original data, while keeping enough information to accurately train standard ML models without resorting to sophisticated Deep Learning architectures. In combination with histopathological examinations, this approach could improve cancer diagnosis by using specific DNA alterations, processed by a replicable and easy-to-use automated technology. The study encourages new investigations which could further increase the classifier’s performance, for example by considering more features and dividing tumors into their main molecular subtypes.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3