CX3CL1 promotes M1 macrophage polarization and osteoclast differentiation through NF-κB signaling pathway in ankylosing spondylitis in vitro

Author:

Feng Xinzhe,Zhu Shanbang,Qiao Junjie,Ji Zhou,Zhou Bole,Xu WeidongORCID

Abstract

Abstract Background Ankylosing spondylitis (AS) is an autoimmune disease with a genetic correlation and is characterized by inflammation in the axial skeleton and sacroiliac joints. Many AS patients also have inflammatory bowel diseases (IBD), but the underlying causes of intestinal inflammation and osteoporosis in AS are not well understood. CX3CL1, a protein involved in inflammation, has been found to be up-regulated in AS patients and AS-model mice. Methods The authors investigated the effects of CX3CL1 on AS by studying its impact on macrophage polarization, inflammation factors, and osteoclast differentiation. Furthermore, the effects of inhibiting the NF-κB pathway and blocking CX3CL1 were assessed using BAY-117082 and anti-CX3CL1 mAb, respectively. AS model mice were used to evaluate the effects of anti-CX3CL1 mAb on limb thickness, spine rupture, and intestinal tissue damage. Results The authors found that CX3CL1 increased the expression of M1-type macrophage markers and inflammation factors, and promoted osteoclast differentiation. This effect was mediated through the NF-κB signaling pathway. Inhibition of the NF-κB pathway prevented M1-type macrophage polarization, reduced inflammation levels, and inhibited osteoclast differentiation. Injection of anti-CX3CL1 mAb alleviated limb thickness, spine rupture, and intestinal tissue damage in AS model mice by inhibiting M1-type macrophage polarization and reducing intestinal tissue inflammation. Conclusions The study demonstrated that up-regulated CX3CL1 promotes M1-type macrophage polarization and osteoclast differentiation through the NF-κB signaling pathway. Inhibition of this pathway and blocking CX3CL1 can alleviate inflammation and bone destruction in AS. These findings contribute to a better understanding of the pathogenesis of AS and provide a basis for clinical diagnosis and treatment.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Basic Medical Research Project of Changhai Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3