circMAP3K4 regulates insulin resistance in trophoblast cells during gestational diabetes mellitus by modulating the miR-6795-5p/PTPN1 axis

Author:

Du Runyu,Wu Na,Bai Yu,Tang Lei,Li LingORCID

Abstract

Abstract Background Insulin resistance (IR) during gestational diabetes mellitus (GDM) has been linked to dysregulated insulin-PI3K/Akt pathway. A defective insulin-PI3K/Akt pathway and dysregulated circular RNA (circRNA) levels have been observed in the placentas of patients with GDM; however, the mechanisms underlying this association remain unclear. Methods circRNAs potentially associated with GDM were selected through bioinformatics analysis and initially identified by quantitative real-time PCR (qPCR) in 9 GDM patients and 9 healthy controls, of which circMAP3K4 was further validated in additional 84 samples by qPCR. circMAP3K4 identity and localization were verified. Pearson correlation analysis was applied to evaluate the correlation between circMAP3K4 expression in the placental tissues of GDM patients and IR-related indicators. An IR model of trophoblasts was constructed using glucosamine. Interactions between miR-6795-5p and circMAP3K4 or PTPN1 were confirmed using a dual-luciferase reporter assay. The circMAP3K4/miR-6795-5p/PTPN1 axis and key markers in the insulin-PI3K/Akt pathway in placentas and trophoblasts were evaluated through qRT-PCR, immunofluorescence, and western blotting. The role of circMAP3K4 in glucose metabolism and cell growth in trophoblasts was determined using the glucose uptake and CCK8 assay, respectively. Results circMAP3K4 was highly expressed in the placentas of patients with GDM and the IR trophoblast model; this was associated with a dysregulated insulin-PI3K/Akt pathway. circMAP3K4 in the placentas of GDM patients was positively correlated with weight gain during pregnancy and time-glucose area under the curve of OGTT. circMAP3K4 and PTPN1 could both bind to miR-6795-5p. miR-6795-5p and PTPN1 were downregulated and upregulated, respectively, in the placentas of GDM patients and the IR trophoblast model. circMAP3K4 silencing or miR-6795-5p overexpression partially reversed the decrease in glucose uptake, inhibition in cell growth, and downregulated IRS1 and Akt phosphorylation in IR-trophoblasts; this restoration was reversed upon co-transfection with an miR-6795-5p inhibitor or PTPN1. Conclusion circMAP3K4 could suppress the insulin-PI3K/Akt signaling pathway via miR-6795-5p/PTPN1 axis, probably contributing to GDM-related IR.

Funder

Clinical Research Project of the Liaoning Diabetes Medical Nutrition Prevention Society

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3