One-step fabrication of lidocaine/CalliSpheres® composites for painless transcatheter arterial embolization

Author:

Tian Chuan,Wang Zijian,Huang Lei,Liu Yimin,Wu Kunpeng,Li Zhaonan,Han Bin,Jiao Dechao,Han Xinwei,Zhao YananORCID

Abstract

Abstract Background Transcatheter arterial embolization (TAE) is one of the first-line treatments for advanced hepatocellular cancer. The pain caused by TAE is a stark complication, which remains to be prevented by biomedical engineering methods. Methods Herein, a commercial embolic agent CalliSpheres® bead (CB) was functionally modified with lidocaine (Lid) using an electrostatic self-assembly technique. The products were coded as CB/Lid-n (n = 0, 5, 10, corresponding to the relative content of Lid). The chemical compositions, morphology, drug-loading, and drug-releasing ability of CB/Lid-n were comprehensively investigated. The biocompatibility was determined by hemolysis assay, live/dead cell staining assay, CCK8 assay, immunofluorescence (IHC) staining assay and quantitative real-time PCR. The thermal withdrawal latency (TWL) and edema ratio (ER) were performed to evaluate the analgesia of CB/Lid-n using a plantar inflammation model. A series of histological staining, including immunohistochemistry (IL-6, IL-10, TGF-β and Navi1.7) and TUNEL were conducted to reveal the underlying mechanism of anti-tumor effect of CB/Lid-n on a VX2-tumor bearing model. Results Lid was successfully loaded onto the surface of CalliSpheres® bead, and the average diameter of CalliSpheres® bead increased along with the dosage of Lid. CB/Lid-n exhibited desirable drug-loading ratio, drug-embedding ratio, and sustained drug-release capability. CB/Lid-n had mild toxicity towards L929 cells, while triggered no obvious hemolysis. Furthermore, CB/Lid-n could improve the carrageenan-induced inflammation response micro-environment in vivo and in vitro. We found that CB/Lid-10 could selectively kill tumor by blocking blood supply, inhibiting cell proliferation, and promoting cell apoptosis. CB/Lid-10 could also release Lid to relieve post-operative pain, mainly by remodeling the harsh inflammation micro-environment (IME). Conclusions In summary, CB/Lid-10 has relatively good biocompatibility and bioactivity, and it can serve as a promising candidate for painless transcatheter arterial embolization.

Funder

the Fellowship of China National Postdoctoral Program for Innovative Talents

the Medical Science and Technology project of Henan Province

the Horizontal Research Program of Zhengzhou University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3