A weighted non-negative matrix factorization approach to predict potential associations between drug and disease

Author:

Wang Mei-Neng,Xie Xue-Jun,You Zhu-Hong,Ding De-Wu,Wong Leon

Abstract

Abstract Background Associations of drugs with diseases provide important information for expediting drug development. Due to the number of known drug-disease associations is still insufficient, and considering that inferring associations between them through traditional in vitro experiments is time-consuming and costly. Therefore, more accurate and reliable computational methods urgent need to be developed to predict potential associations of drugs with diseases. Methods In this study, we present the model called weighted graph regularized collaborative non-negative matrix factorization for drug-disease association prediction (WNMFDDA). More specifically, we first calculated the drug similarity and disease similarity based on the chemical structures of drugs and medical description information of diseases, respectively. Then, to extend the model to work for new drugs and diseases, weighted $$K$$ K nearest neighbor was used as a preprocessing step to reconstruct the interaction score profiles of drugs with diseases. Finally, a graph regularized non-negative matrix factorization model was used to identify potential associations between drug and disease. Results During the cross-validation process, WNMFDDA achieved the AUC values of 0.939 and 0.952 on Fdataset and Cdataset under ten-fold cross validation, respectively, which outperforms other competing prediction methods. Moreover, case studies for several drugs and diseases were carried out to further verify the predictive performance of WNMFDDA. As a result, 13(Doxorubicin), 13(Amiodarone), 12(Obesity) and 12(Asthma) of the top 15 corresponding candidate diseases or drugs were confirmed by existing databases. Conclusions The experimental results adequately demonstrated that WNMFDDA is a very effective method for drug-disease association prediction. We believe that WNMFDDA is helpful for relevant biomedical researchers in follow-up studies.

Funder

National Science Foundation of China

Science and Technology Project of Jiangxi Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3