Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites

Author:

Zhang Lin,Fan Ming,Napolitano Francesco,Gao Xin,Xu Ying,Li LihuaORCID

Abstract

Abstract Background Metastasis is the most devastating stage of cancer progression and often shows a preference for specific organs. Methods To reveal the mechanisms underlying organ-specific metastasis, we systematically analyzed gene expression profiles for three common metastasis sites across all available primary origins. A rank-based method was used to detect differentially expressed genes between metastatic tumor tissues and corresponding control tissues. For each metastasis site, the common differentially expressed genes across all primary origins were identified as organ-specific metastasis genes. Results Pathways enriched by these genes reveal an interplay between the molecular characteristics of the cancer cells and those of the target organ. Specifically, the neuroactive ligand-receptor interaction pathway and HIF-1 signaling pathway were found to have prominent roles in adapting to the target organ environment in brain and liver metastases, respectively. Finally, the identified organ-specific metastasis genes and pathways were validated using a primary breast tumor dataset. Survival and cluster analysis showed that organ-specific metastasis genes and pathways tended to be expressed uniquely by a subgroup of patients having metastasis to the target organ, and were associated with the clinical outcome. Conclusions Elucidating the genes and pathways underlying organ-specific metastasis may help to identify drug targets and develop treatment strategies to benefit patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3