Single-cell transcriptome sequencing reveals aberrantly activated inter-tumor cell signaling pathways in the development of clear cell renal cell carcinoma

Author:

Zhang JunfengORCID,Liu Fuzhong,Guo Wenjia,Bi Xing,Yuan Shuai,Shayiti Fuerhaiti,Pan Ting,Li Kailing,Chen Peng

Abstract

Abstract Background Aberrant intracellular or intercellular signaling pathways are important mechanisms that contribute to the development and progression of cancer. However, the intercellular communication associated with the development of ccRCC is currently unknown. The purpose of this study was to examine the aberrant tumor cell-to-cell communication signals during the development of ccRCC. Methods We conducted an analysis on the scRNA-seq data of 6 ccRCC and 6 normal kidney tissues. This analysis included sub clustering, CNV analysis, single-cell trajectory analysis, cell–cell communication analysis, and transcription factor analysis. Moreover, we performed validation tests on clinical samples using multiplex immunofluorescence. Results This study identified eleven aberrantly activated intercellular signaling pathways in tumor clusters from ccRCC samples. Among these, two of the majors signaling molecules, MIF and SPP1, were mainly secreted by a subpopulation of cancer stem cells. This subpopulation demonstrated high expression levels of the cancer stem cell markers POU5F1 and CD44 (POU5F1hiCD44hiE.T), with the transcription factor POU5F1 regulating the expression of SPP1. Further research demonstrated that SPP1 binds to integrin receptors on the surface of target cells and promotes ccRCC development and progression by activating potential signaling mechanisms such as ILK and JAK/STAT. Conclusion Aberrantly activated tumor intercellular signaling pathways promote the development and progression of ccRCC. The cancer stem cell subpopulation (POU5F1hiCD44hiE.T) promotes malignant transformation and the development of a malignant phenotype by releasing aberrant signaling molecules and interacting with other tumor cells.

Funder

The National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3