Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective

Author:

Erdemir AhmetORCID,Mulugeta LealemORCID,Ku Joy P.ORCID,Drach AndrewORCID,Horner MarcORCID,Morrison Tina M.ORCID,Peng Grace C. Y.ORCID,Vadigepalli RajanikanthORCID,Lytton William W.ORCID,Myers Jerry G.ORCID

Abstract

AbstractThe complexities of modern biomedicine are rapidly increasing. Thus, modeling and simulation have become increasingly important as a strategy to understand and predict the trajectory of pathophysiology, disease genesis, and disease spread in support of clinical and policy decisions. In such cases, inappropriate or ill-placed trust in the model and simulation outcomes may result in negative outcomes, and hence illustrate the need to formalize the execution and communication of modeling and simulation practices. Although verification and validation have been generally accepted as significant components of a model’s credibility, they cannot be assumed to equate to a holistic credible practice, which includes activities that can impact comprehension and in-depth examination inherent in the development and reuse of the models. For the past several years, the Committee on Credible Practice of Modeling and Simulation in Healthcare, an interdisciplinary group seeded from a U.S. interagency initiative, has worked to codify best practices. Here, we provide Ten Rules for credible practice of modeling and simulation in healthcare developed from a comparative analysis by the Committee’s multidisciplinary membership, followed by a large stakeholder community survey. These rules establish a unified conceptual framework for modeling and simulation design, implementation, evaluation, dissemination and usage across the modeling and simulation life-cycle. While biomedical science and clinical care domains have somewhat different requirements and expectations for credible practice, our study converged on rules that would be useful across a broad swath of model types. In brief, the rules are: (1) Define context clearly. (2) Use contextually appropriate data. (3) Evaluate within context. (4) List limitations explicitly. (5) Use version control. (6) Document appropriately. (7) Disseminate broadly. (8) Get independent reviews. (9) Test competing implementations. (10) Conform to standards. Although some of these are common sense guidelines, we have found that many are often missed or misconstrued, even by seasoned practitioners. Computational models are already widely used in basic science to generate new biomedical knowledge. As they penetrate clinical care and healthcare policy, contributing to personalized and precision medicine, clinical safety will require established guidelines for the credible practice of modeling and simulation in healthcare.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference79 articles.

1. Peng GCY. Editorial: What Biomedical Engineers Can Do to Impact Multiscale Modeling (TBME Letters Special Issue on Multiscale Modeling and Analysis in Computational Biology and Medicine: Part-2) [Internet]. IEEE Transactions on Biomedical Engineering. 2011. p. 3440–2. http://dx.doi.org/10.1109/tbme.2011.2173248.

2. Avicenna Alliance. An international and technological research and development Roadmap produced by the Avicenna Coordination Support Action. European Commission; 2015.

3. Haddad T, Himes A, Thompson L, Irony T, Nair R, MDIC Computer Modeling and Simulation Working Group Participants. Incorporation of stochastic engineering models as prior information in Bayesian medical device trials. J Biopharm Stat. 2017;27:1089–103.

4. US Food and Drug Administration. Advancing Regulatory Science Report. FDA; 2011.

5. 114th Congress. S. Rept. 114-82–Agriculture, Rural Development, Food And Drug Administration, And Related Agencies Appropriations BilL. 2016.

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3