RUNX1 knockdown induced apoptosis and impaired EMT in high-grade serous ovarian cancer cells

Author:

Chen Yuanzhi,He Zhicheng,Yang Shuting,Chen Cheng,Xiong Wenyong,He YingYing,Liu ShubaiORCID

Abstract

AbstractOvarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.

Funder

Kunming Institute of Botany, Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3