Single-cell RNA sequencing reveals small extracellular vesicles derived from malignant cells that contribute to angiogenesis in human breast cancers

Author:

Zhang Youxue,Zhen Fang,Sun Yue,Han Bing,Wang Hongyi,Zhang Yuhang,Zhang Huaixi,Hu JingORCID

Abstract

Abstract Background Breast cancer is the most common cancer affecting women across the world. Tumor endothelial cells (TECs) and malignant cells are the major constituents of the tumor microenvironment (TME), but their origin and role in shaping disease initiation, progression, and treatment responses remain unclear due to significant heterogeneity. Methods Tissue samples were collected from eight patients presenting with breast cancer. Single-cell RNA sequencing (scRNA-seq) analysis was employed to investigate the presence of distinct cell subsets in the tumor microenvironment. InferCNV was used to identify cancer cells. Pseudotime trajectory analysis revealed the dynamic process of breast cancer angiogenesis. We validated the function of small extracellular vesicles (sEVs)-derived protein phosphatase 1 regulatory inhibitor subunit 1B (PPP1R1B) in vitro experiments. Results We performed single-cell transcriptomics analysis of the factors associated with breast cancer angiogenesis and identified twelve subclusters of endothelial cells involved in the tumor microenvironment. We also identified the role of TECs in tumor angiogenesis and confirmed their participation in different stages of angiogenesis, including communication with other cell types via sEVs. Overall, the research uncovered the TECs heterogeneity and the expression levels of genes at different stages of tumor angiogenesis. Conclusions This study showed sEVs derived from breast cancer malignant cells promote blood vessel formation by activating endothelial cells through the transfer of PPP1R1B. This provides a new direction for the development of anti-angiogenic therapies for human breast cancer.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Natural Science Fund for Outstanding Youth of Heilongjiang Province grant

Postdoctoral Scientific Research Staring Fund of Heilongjiang Province grant

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3