Lkb1 aggravates diffuse large B-cell lymphoma by promoting the function of Treg cells and immune escape

Author:

Su Xiuhua,Sun Tao,Li Meng,Xia Yuan,Li Mingying,Wang Dongmei,Lu Fei,Ye Jingjing,Ji ChunyanORCID

Abstract

Abstract Background Regulatory T cells (Tregs) induce immune responses and may contribute to immune escape in tumors. Accumulation of Tregs in tumors represents a critical barrier to anti-tumor immunity and immunotherapy. However, conflicting results describing the role of Tregs in lymphoma warrant further investigation. The precise features and mechanisms underlying the alteration in Tregs in diffuse large B-cell lymphoma (DLBCL) are not well understood yet. In this study, we analyzed the mechanism underlying the observed alterations in Tregs in DLBCL and examined the effect of Lkb1 expression on the immunosuppressive function of human Tregs. Methods Flow cytometry and immunofluorescence were used to analyze the proportion of Tregs and effector Tregs in the peripheral blood and lymph nodes of patients with DLBCL and control group. In vitro culture assays were used to analyze the immunosuppressive function of Tregs in the two groups. Transcriptome sequencing was performed to analyze the differentially expressed genes in the two groups, and the transcription level and protein expression of Lkb1 in the two groups were detected using RT-PCR and WES microprotein technology. Lentiviral vectors were constructed to explore the functional changes of Tregs with stable upregulation and downregulation of Lkb1. Finally, a humanized murine lymphoma model was established to study the function of Lkb1 in Tregs in the pathogenesis of DLBCL. Results The number of Tregs was found to be dramatically increased in peripheral blood and tumor tissue in DLBCL patients compared with that in healthy controls, and decreased after treatment. Tregs from DLBCL patients exhibited multiple enhanced functions, including increased inhibition of CD8+cytotoxic T cells (CTL) against tumor cells, enhanced suppression of CD8+CTL secretion of granular enzyme, and suppression of CD8+CTL degranulation. Lkb1 was found to be upregulated in Tregs of DLBCL patients. Furthermore, Lkb1 contributes to Treg immunosuppressive function in DLBCL by regulating the mevalonate pathway. Finally, deletion of Lkb1 in Tregs suppressed tumor growth and promoted anti-tumor immunity in a DLBCL murine model. Conclusions These findings confirmed that Lkb1-regulated Tregs are critical for immune escape in DLBCL, which emphasizes that Lkb1 is a potential target for the immunotherapy of DLBCL.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Distinguished Taishan Scholars in Climbing Plan

Taishan Scholar Foundation of Shandong Province

the Major Research plan of the National Natural Science Foundation of China

the Clinical Practical new Technology and Development Fund of Qilu Hospital, Shandong University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3