Altered splicing machinery in lung carcinoids unveils NOVA1, PRPF8 and SRSF10 as novel candidates to understand tumor biology and expand biomarker discovery

Author:

Blázquez-Encinas Ricardo,García-Vioque Víctor,Caro-Cuenca Teresa,Moreno-Montilla María Trinidad,Mangili Federica,Alors-Pérez Emilia,Ventura Sebastian,Herrera-Martínez Aura D.,Moreno-Casado Paula,Calzado Marco A.,Salvatierra Ángel,Gálvez-Moreno María A.,Fernandez-Cuesta Lynnette,Foll Matthieu,Luque Raúl M.,Alcala Nicolas,Pedraza-Arevalo Sergio,Ibáñez-Costa AlejandroORCID,Castaño Justo P.ORCID

Abstract

Abstract Background Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative layer. Methods We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a microfluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohistochemistry, their associations with clinical features were assessed and their putative functional roles were evaluated in vitro in two lung carcinoid-derived cell lines. Results The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classification analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analysis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non-tumor tissue. Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, and were associated to both common and disparate functional pathways. Accordingly, modulating the expression of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their functional relevance and potential as actionable targets. Conclusions These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.

Funder

MINECO

Ministerio de Ciencia e Innovación

Instituto de Salud Carlos III

Ministerio de Universidades

Consejería de Salud y Consumo, Junta de Andalucía

Grupo español de tumores neuroendocrinos

Fundación Eugenio Rodríguez Pascual

CIBERobn

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3