Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture

Author:

Kitcharanant Nitchanant,Chotiyarnwong Pojchong,Tanphiriyakun Thiraphat,Vanitcharoenkul Ekasame,Mahaisavariya Chantas,Boonyaprapa Wichian,Unnanuntana Aasis

Abstract

Abstract Background Fragility hip fracture increases morbidity and mortality in older adult patients, especially within the first year. Identification of patients at high risk of death facilitates modification of associated perioperative factors that can reduce mortality. Various machine learning algorithms have been developed and are widely used in healthcare research, particularly for mortality prediction. This study aimed to develop and internally validate 7 machine learning models to predict 1-year mortality after fragility hip fracture. Methods This retrospective study included patients with fragility hip fractures from a single center (Siriraj Hospital, Bangkok, Thailand) from July 2016 to October 2018. A total of 492 patients were enrolled. They were randomly categorized into a training group (344 cases, 70%) or a testing group (148 cases, 30%). Various machine learning techniques were used: the Gradient Boosting Classifier (GB), Random Forests Classifier (RF), Artificial Neural Network Classifier (ANN), Logistic Regression Classifier (LR), Naive Bayes Classifier (NB), Support Vector Machine Classifier (SVM), and K-Nearest Neighbors Classifier (KNN). All models were internally validated by evaluating their performance and the area under a receiver operating characteristic curve (AUC). Results For the testing dataset, the accuracies were GB model = 0.93, RF model = 0.95, ANN model = 0.94, LR model = 0.91, NB model = 0.89, SVM model = 0.90, and KNN model = 0.90. All models achieved high AUCs that ranged between 0.81 and 0.99. The RF model also provided a negative predictive value of 0.96, a positive predictive value of 0.93, a specificity of 0.99, and a sensitivity of 0.68. Conclusions Our machine learning approach facilitated the successful development of an accurate model to predict 1-year mortality after fragility hip fracture. Several machine learning algorithms (eg, Gradient Boosting and Random Forest) had the potential to provide high predictive performance based on the clinical parameters of each patient. The web application is available at www.hipprediction.com. External validation in a larger group of patients or in different hospital settings is warranted to evaluate the clinical utility of this tool. Trial registration Thai Clinical Trials Registry (22 February 2021; reg. no. TCTR20210222003).

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3