Abstract
AbstractThe Co-flow Jet (CFJ) technology holds significant promise for enhancing aerodynamic efficiency and furthering decarbonization in the evolving landscape of air transportation. The aim of this study is to empirically validate an optimized CFJ airfoil through low-speed wind tunnel experiments. The CFJ airfoil is structured in a tri-sectional design, consisting of one experimental segment and two stationary segments. A support rod penetrates the airfoil, fulfilling dual roles: it not only maintains the structural integrity of the overall model but also enables the direct measurement of aerodynamic forces on the test section of the CFJ airfoil within a two-dimensional wind tunnel. In parallel, the stationary segments are designed to effectively minimize the interference from the lateral tunnel walls. The experimental results are compared with numerical simulations, specifically focusing on aerodynamic parameters and flow field distribution. The findings reveal that the experimental framework employed is highly effective in characterizing the aerodynamic behavior of the CFJ airfoil, showing strong agreement with the simulation data.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献