TPpred-LE: therapeutic peptide function prediction based on label embedding

Author:

Lv Hongwu,Yan Ke,Liu BinORCID

Abstract

Abstract Background Therapeutic peptides play an essential role in human physiology, treatment paradigms and bio-pharmacy. Several computational methods have been developed to identify the functions of therapeutic peptides based on binary classification and multi-label classification. However, these methods fail to explicitly exploit the relationship information among different functions, preventing the further improvement of the prediction performance. Besides, with the development of peptide detection technology, peptide functions will be more comprehensively discovered. Therefore, it is necessary to explore computational methods for detecting therapeutic peptide functions with limited labeled data. Results In this study, a novel method called TPpred-LE based on Transformer framework was proposed for predicting therapeutic peptide multiple functions, which can explicitly extract the function correlation information by using label embedding methodology and exploit the specificity information based on function-specific classifiers. Besides, we incorporated the multi-label classifier retraining approach (MCRT) into TPpred-LE to detect the new therapeutic functions with limited labeled data. Experimental results demonstrate that TPpred-LE outperforms the other state-of-the-art methods, and TPpred-LE with MCRT is robust for the limited labeled data. Conclusions In summary, TPpred-LE is a function-specific classifier for accurate therapeutic peptide function prediction, demonstrating the importance of the relationship information for therapeutic peptide function prediction. MCRT is a simple but effective strategy to detect functions with limited labeled data.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3