Nuclear lncRNA NORSF reduces E2 release in granulosa cells by sponging the endogenous small activating RNA miR-339

Author:

Wang Miaomiao,Wang Yang,Yang Liu,Du Xing,Li QifaORCID

Abstract

Abstract Background Functioning as a competing endogenous RNA (ceRNA) is the main action mechanism of most cytoplasmic lncRNAs. However, it is not known whether this mechanism of action also exists in the nucleus. Results We identified four nuclear lncRNAs that are presented in granulosa cells (GCs) and were differentially expressed during sow follicular atresia. Notably, similar to cytoplasmic lncRNAs, these nuclear lncRNAs also sponge miRNAs in the nucleus of GCs through direct interactions. Furthermore, NORSF (non-coding RNA involved in sow fertility), one of the nuclear lncRNA acts as a ceRNA of miR-339. Thereby, it relieves the regulatory effect of miR-339 on CYP19A1 encoding P450arom, a rate-limiting enzyme for E2 synthesis in GCs. Interestingly, miR-339 acts as a saRNA that activates CYP19A1 transcription and enhances E2 release by GCs through altering histone modifications in the promoter by directly binding to the CYP19A1 promoter. Functionally, NORSF inhibited E2 release by GCs via the miR-339 and CYP19A1 axis. Conclusions Our findings highlight an unappreciated mechanism of nuclear lncRNAs and show it acts as a ceRNA, which may be a common lncRNA function in the cytoplasm and nucleus. We also identified a potential endogenous saRNA for improving female fertility and treating female infertility.

Funder

National Natural Science Foundation of China

Qinglan Project of Jiangsu Province of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3