ASC proneural factors are necessary for chromatin remodeling during neuroectodermal to neuroblast fate transition to ensure the timely initiation of the neural stem cell program

Author:

Theodorou VasilikiORCID,Stefanaki Aikaterini,Drakos Minas,Triantafyllou Dafne,Delidakis Christos

Abstract

Abstract Background In both Drosophila and mammals, the achaete-scute (ASC/ASCL) proneural bHLH transcription factors are expressed in the developing central and peripheral nervous systems, where they function during specification and maintenance of the neural stem cells in opposition to Notch signaling. In addition to their role in nervous system development, ASC transcription factors are oncogenic and exhibit chromatin reprogramming activity; however, the impact of ASC on chromatin dynamics during neural stem cell generation remains elusive. Here, we investigate the chromatin changes accompanying neural commitment using an integrative genetics and genomics methodology. Results We found that ASC factors bind equally strongly to two distinct classes of cis-regulatory elements: open regions remodeled earlier during maternal to zygotic transition by Zelda and less accessible, Zelda-independent regions. Both classes of cis-elements exhibit enhanced chromatin accessibility during neural specification and correlate with transcriptional regulation of genes involved in a variety of biological processes necessary for neuroblast function/homeostasis. We identified an ASC-Notch regulated TF network that includes likely prime regulators of neuroblast function. Using a cohort of ASC target genes, we report that ASC null neuroblasts are defectively specified, remaining initially stalled, unable to divide, and lacking expression of many proneural targets. When mutant neuroblasts eventually start proliferating, they produce compromised progeny. Reporter lines driven by proneural-bound enhancers display ASC dependency, suggesting that the partial neuroblast identity seen in the absence of ASC genes is likely driven by other, proneural-independent, cis-elements. Neuroblast impairment and the late differentiation defects of ASC mutants are corrected by ectodermal induction of individual ASC genes but not by individual members of the TF network downstream of ASC. However, in wild-type embryos, the induction of individual members of this network induces CNS hyperplasia, suggesting that they synergize with the activating function of ASC to consolidate the chromatin dynamics that promote neural specification. Conclusions We demonstrate that ASC proneural transcription factors are indispensable for the timely initiation of the neural stem cell program at the chromatin level by regulating a large number of enhancers in the vicinity of neural genes. This early chromatin remodeling is crucial for both neuroblast homeostasis as well as future progeny fidelity.

Funder

ministry of education and religious affairs, sport and culture

fp7 people: marie-curie actions

fondation santé

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3