Combined analysis of microstructures within an annual ring of Douglas fir (Pseudotsuga menziesii) by dynamic mechanical analysis and small angle X-ray scattering

Author:

Horiyama Hiroaki,Kojiro KeisukeORCID,Okahisa Yoko,Imai Tomoya,Itoh Takafumi,Furuta Yuzo

Abstract

AbstractDynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements of water-saturated wood of Douglas fir (Pseudotsuga menziesii) in the temperature range of 0 ℃ to 100 ℃ were focused to clarify microstructural changes within an annual ring. The following results were obtained. Thermal softening behavior caused by micro-Brownian motion of lignin was observed in both earlywood and latewood. The peaks of tanδ were found at around 95 ℃ for earlywood and at around 90 ℃ for latewood. These results suggested that the structures of lignin in the cell wall were different between earlywood and latewood. SAXS measurements of water-saturated earlywood and latewood in water were performed with precise temperature control. The scattering intensity increased with increasing temperature, indicating that the density of the matrix was reduced at higher temperature. One-dimensional SAXS intensity at the equator, which approximately represents cellulose microfibrils arrangement in the matrix, was intensively analyzed using the WoodSAS model. The result of this model fitting showed that the cellulose microfibril diameter of latewood was higher than that of earlywood. In addition, the value of interfibrillar distance decreased monotonically in the earlywood, while it decreased rapidly in the latewood from 60 ℃ to 90 ℃. The changes in the cellulose microfibril (CMF) diameter and the interfibrillar distance with increasing temperature between earlywood and latewood by SAXS measurement were different. The differences in CMF diameter and inter-fibril distance between earlywood and latewood measured by SAXS also support the hypothesis that lignin structure differs between earlywood and latewood based on the results of DMA measurements.

Funder

This study is partially supported by a research project of the Mission-2 activity in Research Institute for Sustainable Humanosphere, Kyoto University.

Publisher

Springer Science and Business Media LLC

Subject

Biomaterials

Reference30 articles.

1. Kollmann FFF, Côté WA (1968) Principles of wood science and technology, solid wood, vol 1. Springer, Berlin

2. Miller RB (1999) Structure of wood In: Wood Handbook—wood as an Engineering Material (Gen. Tech. Report FPL-GTR113). U.S. Department of Agriculture Forest Products Laboratory, Madison

3. Karlman L, Mörling T, Martinsson O (2005) Wood density, annual ring width and latewood content in larch and Scots pine. Eurasian J For Res 8(2):91–96

4. Büyüksarı Ü, As N, Dündar T (2017) Mechanical properties of earlywood and latewood sections of Scots pine wood. BioResources 12(2):4004–4012

5. Kagawa A, Sugimoto A, Maximov TC (2006) 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant, Cell Environ 29(8):1571–1584

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3