Establishment of a differential diagnosis method and an online prediction platform for AOSD and sepsis based on gradient boosting decision trees algorithm

Author:

Zhou Dongmei,Xie Jingzhi,Wang Jiarui,Zong Juan,Fang Quanquan,Luo Fei,Zhang Ting,Ma Hua,Cao Lina,Yin Hanqiu,Yin Songlou,Li Shuyan

Abstract

Abstract Objective The differential diagnosis between adult-onset Still’s disease (AOSD) and sepsis has always been a challenge. In this study, a machine learning model for differential diagnosis of AOSD and sepsis was developed and an online platform was developed to facilitate the clinical application of the model. Methods All data were collected from 42 AOSD patients and 50 sepsis patients admitted to Affiliated Hospital of Xuzhou Medical University from December 2018 to December 2021. In addition, 5 AOSD patients and 10 sepsis patients diagnosed in our hospital after March 2022 were collected for external validation. All models were built using the scikit-learn library (version 1.0.2) in Python (version 3.9.7), and feature selection was performed using the SHAP (Shapley Additive exPlanation) package developed in Python. Results The results showed that the gradient boosting decision tree(GBDT) optimization model based on arthralgia, ferritin × lymphocyte count, white blood cell count, ferritin × platelet count, and α1-acid glycoprotein/creatine kinase could well identify AOSD and sepsis. The training set interaction test (AUC: 0.9916, ACC: 0.9457, Sens: 0.9556, Spec: 0.9578) and the external validation also achieved satisfactory results (AUC: 0.9800, ACC: 0.9333, Sens: 0.8000, Spec: 1.000). We named this discrimination method AIADSS (AI-assisted discrimination of Still’s disease and Sepsis) and created an online service platform for practical operation, the website is http://cppdd.cn/STILL1/. Conclusion We created a method for the identification of AOSD and sepsis based on machine learning. This method can provide a reference for clinicians to formulate the next diagnosis and treatment plan.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3