Abstract
Abstract
Background
Both TGFβ and estradiol (E2), a form of estrogen, are pro-fibrotic in the skin. In the connective tissue disease, systemic sclerosis (SSc), both TGFβ and E2 are likely pathogenic. Yet the regulation of TGFβ in E2-induced dermal fibrosis remains ill-defined. Elucidating those regulatory mechanisms will improve the understanding of fibrotic disease pathogenesis and set the stage for developing potential therapeutics. Using E2-stimulated primary human dermal fibroblasts in vitro and human skin tissue ex vivo, we identified the important regulatory proteins for TGFβ and investigated the extracellular matrix (ECM) components that are directly stimulated by E2-induced TGFβ signaling.
Methods
We used primary human dermal fibroblasts in vitro and human skin tissue ex vivo stimulated with E2 or vehicle (ethanol) to measure TGFβ1 and TGFβ2 levels using quantitative PCR (qPCR). To identify the necessary cell signaling proteins in E2-induced TGFβ1 and TGFβ2 transcription, human dermal fibroblasts were pre-treated with an inhibitor of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126. Finally, human skin tissue ex vivo was pre-treated with SB-431542, a TGFβ receptor inhibitor, and ICI 182,780, an estrogen receptor α (ERα) inhibitor, to establish the effects of TGFβ and ERα signaling on E2-induced collagen 22A1 (Col22A1) transcription.
Results
We found that expression of TGFβ1, TGFβ2, and Col22A1, a TGFβ-responsive gene, is induced in response to E2 stimulation. Mechanistically, Col22A1 induction was blocked by SB-431542 and ICI 182,780 despite E2 stimulation. Additionally, inhibiting E2-induced ERK/MAPK activation and early growth response 1 (EGR1) transcription prevents the E2-induced increase in TGFβ1 and TGFβ2 transcription and translation.
Conclusions
We conclude that E2-induced dermal fibrosis occurs in part through induction of TGFβ1, 2, and Col22A1, which is regulated through EGR1 and the MAPK pathway. Thus, blocking estrogen signaling and/or production may be a novel therapeutic option in pro-fibrotic diseases.
Funder
National Institutes of Health
SmartState and Kitty Trask Holt Endowment.
Doris Duke Charitable Foundation
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27.
2. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Society. 2016;24(2):215–22.
3. Lafyatis R. Transforming growth factor beta--at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10(12):706–19.
4. Gruschwitz M, Muller PU, Sepp N, Hofer E, Fontana A, Wick G. Transcription and expression of transforming growth factor type beta in the skin of progressive systemic sclerosis: a mediator of fibrosis? J Invest Dermatol. 1990;94(2):197–203.
5. Falanga V, Gerhardt CO, Dasch JR, Takehara K, Ksander GA. Skin distribution and differential expression of transforming growth factor beta 1 and beta 2. J Dermatol Sci. 1992;3(3):131–6.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献