Synergistic roles of CBX4 chromo and SIM domains in regulating senescence of primary human osteoarthritic chondrocytes

Author:

Chen Yu-Hsiu,Zhang Xin,Attarian David,Kraus Virginia Byers

Abstract

Abstract Background Cellular senescence is a critical factor contributing to osteoarthritis (OA). Overexpression of chromobox homolog 4 (CBX4) in a mouse system was demonstrated to alleviate post-traumatic osteoarthritis (PTOA) by reducing cellular senescence. Additionally, replicative cellular senescence of WI-38 fibroblasts can be attenuated by CBX4. However, the mechanisms underlying this senomorphic function of CBX4 are not fully understood. In this study, we aimed to investigate the role of CBX4 in cellular senescence in human primary osteoarthritic chondrocytes and to identify the functional domains of CBX4 necessary for its function in modulating senescence. Methods Chondrocytes, isolated from 6 individuals undergoing total knee replacement for OA, were transduced with wild-type CBX4, mutant CBX4, and control lentiviral constructs. Senescence-related phenotypic outcomes included the following: multiple flow cytometry-measured markers (p16INK4A, senescence-associated β-galactosidase [SA-β-gal] activity and dipeptidyl peptidase-4 [DPP4], and proliferation marker EdU), multiplex ELISA-measured markers in chondrocyte culture media (senescence-associated secretory phenotypes [SASPs], including IL-1β, IL-6, IL-8, TNF-α, MMP-1, MMP-3, and MMP-9), and PCR array-evaluated senescence-related genes. Results Compared with control, CBX4 overexpression in OA chondrocytes decreased DPP4 expression and SASP secretion and increased chondrocyte proliferation confirming CBX4 senomorphic effects on primary human chondrocytes. Point mutations of the chromodomain domain (CDM, involved in chromatin modification) alone were sufficient to partially block the senomorphic activity of CBX4 (p16INK4A and DPP4 increased, and EdU decreased) but had minimal effect on SASP secretion. Although having no effect on p16INK4A, DPP4, and EdU, deletion of two small-ubiquitin-like-modifier-interaction motifs (CBX4 ΔSIMs) led to increased SASP secretion (IL-1β, TNF-α, IL-8). The combination CBX4 CDMΔSIMs altered all these measures adversely and to a greater degree than the single domain mutants. Deletion of the C-terminal (CBX4 ΔC-box) involved with transcriptional silencing of polycomb group proteins increased IL-1β slightly but significantly but altered none of the other senescence outcome measures. Conclusions CBX4 has a senomorphic effect on human osteoarthritic chondrocytes. CDM is critical for CBX4-mediated regulation of senescence. The SIMs are supportive but not indispensable for CBX4 senomorphic function while the C-box is dispensable.

Funder

Taiwan government

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3