Cronkhite‒Canada syndrome as inflammatory hamartomatous polyposis: new evidence from whole transcriptome sequencing of colonic polyps

Author:

Liu Shuang,Zhi Yunfei,Zhang Runfeng,You Yan,You Wen,Xu Qiushi,Li Jingnan,Li JiORCID

Abstract

Abstract Background Cronkhite-Canada syndrome (CCS) is a rare, nonhereditary disease characterized by diffuse gastrointestinal polyposis and ectodermal abnormalities. Although it has been proposed to be a chronic inflammatory condition, direct evidence of its pathogenesis is lacking. This study aims to investigate the pathophysiology of CCS by analyzing transcriptomic changes in the colonic microenvironment. Methods Next-generation sequencing-based genome-wide transcriptional profiling was performed on colonic hamartomatous polyps from four CCS patients and normal colonic mucosa from four healthy volunteers. Analyses of differential expression and multiple enrichment analyses were conducted from the molecular level to the cellular level. Quantitative real-time PCR (qRT-PCR) was carried out to validate the sequencing accuracy in samples from six CCS patients and six healthy volunteers. Results A total of 543 differentially expressed genes were identified, including an abundance of CC- and CXC-chemokines. Innate immune response-related pathways and processes, such as leukocyte chemotaxis, cytokine production, IL-17, TNF, IL-1 and NF-kB signaling pathways, were prominently enhanced in CCS colonic polyps. Upregulation of wound healing, epithelial-mesenchymal transition, Wnt, and PI3K-Akt signaling pathways were also observed. Enrichment analyses at different levels identified extracellular structure disorganization, dysfunction of the gut mucosal barrier, and increased angiogenesis. Validation by qRT-PCR confirmed increased expression of the LCN2, IL1B, CXCL1, and CXCL3 genes in CCS colonic polyps. Conclusions This case-control whole transcriptome analysis of active CCS colonic hamartomatous polyps revealed intricate molecular pathways, emphasizing the role of the innate immune response, extracellular matrix disorganization, inflammatory cell infiltration, increased angiogenesis, and potential epithelial to mesenchymal transition. These findings supports CCS as a chronic inflammatory condition and sheds light on potential therapeutic targets, paving the way for more effective and personalized management of CCS in the future.

Funder

National High Level Hospital Clinical Research Funding

National Foundation for Medical Research and Innovation

National key clinical specialty construction project

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3