A new approach to identifying patients with elevated risk for Fabry disease using a machine learning algorithm

Author:

Jefferies John L.,Spencer Alison K.,Lau Heather A.,Nelson Matthew W.,Giuliano Joseph D.,Zabinski Joseph W.ORCID,Boussios Costas,Curhan Gary,Gliklich Richard E.,Warnock David G.

Abstract

Abstract Background Fabry disease (FD) is a rare genetic disorder characterized by glycosphingolipid accumulation and progressive damage across multiple organ systems. Due to its heterogeneous presentation, the condition is likely significantly underdiagnosed. Several approaches, including provider education efforts and newborn screening, have attempted to address underdiagnosis of FD across the age spectrum, with limited success. Artificial intelligence (AI) methods present another option for improving diagnosis. These methods isolate common health history patterns among patients using longitudinal real-world data, and can be particularly useful when patients experience nonspecific, heterogeneous symptoms over time. In this study, the performance of an AI tool in identifying patients with FD was analyzed. The tool was calibrated using de-identified health record data from a large cohort of nearly 5000 FD patients, and extracted phenotypic patterns from these records. The tool then used this FD pattern information to make individual-level estimates of FD in a testing dataset. Patterns were reviewed and confirmed with medical experts. Results The AI tool demonstrated strong analytic performance in identifying FD patients. In out-of-sample testing, it achieved an area under the receiver operating characteristic curve (AUROC) of 0.82. Strong performance was maintained when testing on male-only and female-only cohorts, with AUROCs of 0.83 and 0.82 respectively. The tool identified small segments of the population with greatly increased prevalence of FD: in the 1% of the population identified by the tool as at highest risk, FD was 23.9 times more prevalent than in the population overall. The AI algorithm used hundreds of phenotypic signals to make predictions and included both familiar symptoms associated with FD (e.g. renal manifestations) as well as less well-studied characteristics. Conclusions The AI tool analyzed in this study performed very well in identifying Fabry disease patients using structured medical history data. Performance was maintained in all-male and all-female cohorts, and the phenotypic manifestations of FD highlighted by the tool were reviewed and confirmed by clinical experts in the condition. The platform’s analytic performance, transparency, and ability to generate predictions based on existing real-world health data may allow it to contribute to reducing persistent underdiagnosis of Fabry disease.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3