Pedestrian dead reckoning for MARG navigation using a smartphone

Author:

Tian Zengshan,Zhang Yuan,Zhou Mu,Liu Yu

Abstract

Abstract The demand for navigating pedestrian by using a hand-held mobile device increased remarkably over the past few years, especially in GPS-denied scenario. We propose a new pedestrian dead reckoning (PDR)-based navigation algorithm by using magnetic, angular rate, and gravity (MARG) sensors which are equipped in existing commercial smartphone. Our proposed navigation algorithm consists of step detection, stride length estimation, and heading estimation. To eliminate the gauge step errors of the random bouncing motions, we designed a reliable algorithm for step detection. We developed a BP neural network-based stride length estimation algorithm to apply to different users. In response to the challenge of magnetic disturbance, a quaternion-based extended Kalman filter (EKF) is introduced to determine the user's heading direction for each step. The performance of our proposed pedestrian navigation algorithm is verified by using a smartphone in providing accurate, reliable, and continuous location tracking services.

Publisher

Springer Science and Business Media LLC

Reference20 articles.

1. Soehren W, Hawkinson W: A prototype personal navigation system. IEEE Aerospace and Electronic Systems Magazine 2008, 6(23):10-18.

2. Evennou F, Marx F: Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning. EURASIP J Adv Sign Process 2006, 2006: 164-164.

3. Nilsson JO, Zachariah D, Skog I, Händel P: Cooperative localization by dual foot-mounted inertial sensors and inter-agent ranging. arXiv preprint arXiv 2013, 1304: 3663.

4. Li F, Zhao C, Ding G, Gong J, Liu C, Zhao F: A reliable and accurate indoor localization method using phone inertial sensors. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York: ACM; 2012:421-430.

5. Ali A, Siddharth S, Syed Z, El-Sheimy N: An improved personal dead-reckoning algorithm for dynamically changing smartphone user modes. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012). Nashville: ; 2432-2439. 17–21 September 2012

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Site Survey for RSS-Based Wi-Fi Positioning Using Unlabeled Data;IEEE Transactions on Vehicular Technology;2023-08

2. Smart Device-Based PDR Methods for Indoor Localization;Machine Learning for Indoor Localization and Navigation;2023

3. Recent Advances in Pedestrian Inertial Navigation Based on Smartphone: A Review;IEEE Sensors Journal;2022-12-01

4. Review of Indoor Positioning System: Technologies and Applications;2022 International Conference on Data Analytics for Business and Industry (ICDABI);2022-10-25

5. Monocular Cloud Map Generation for Intelligent Navigation;2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT);2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3