Stable transformation of fluorescent proteins into Nosema bombycis by electroporation

Author:

Dong ZhanqiORCID,Gao Na,Deng Boyuan,Huang Xuhua,Hu Congwu,Chen Peng,Wu Qin,Lu Cheng,Pan Minhui

Abstract

Abstract Background Microsporidia are a group of intracellular parasitic eukaryotes, serious pathogens that cause widespread infection in humans, vertebrates, and invertebrates. Because microsporidia have a thick spore wall structure, the in vitro transformation, cell culture, and genetic operation technology of microsporidia are far behind that of other parasites. Methods In this study, according to an analysis of the life-cycle of microsporidia, Nosema bombycis, and different electro-transformation conditions, the transduction efficiency of introducing foreign genes into N. bombycis was systematically determined. Results We analyzed the direct electro-transformation of foreign genes into germinating N. bombycis using reporters under the regulation of different characteristic promoters. Furthermore, we systematically determined the efficiency of electro-transformation into N. bombycis under different electro-transformation conditions and different developmental stages through an analysis of the whole life-cycle of N. bombycis. These results revealed that foreign genes could be effectively introduced through a perforation voltage of 100 V pulsed for 15 ms during the period of N. bombycis sporeplasm proliferation. Conclusions We present an effective method for electro-transformation of a plasmid encoding a fluorescent protein into N. bombycis, which provides new insight for establishing genetic modifications and potential applications in these intracellular parasites. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

China Agriculture Research System of MOF and MARA

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Parasitology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3