AI-driven convolutional neural networks for accurate identification of yellow fever vectors

Author:

de Araújo Taís Oliveira,de Miranda Vinicius Lima,Gurgel-Gonçalves Rodrigo

Abstract

Abstract Background Identifying mosquito vectors is crucial for controlling diseases. Automated identification studies using the convolutional neural network (CNN) have been conducted for some urban mosquito vectors but not yet for sylvatic mosquito vectors that transmit the yellow fever. We evaluated the ability of the AlexNet CNN to identify four mosquito species: Aedes serratus, Aedes scapularis, Haemagogus leucocelaenus and Sabethes albiprivus and whether there is variation in AlexNet’s ability to classify mosquitoes based on pictures of four different body regions. Methods The specimens were photographed using a cell phone connected to a stereoscope. Photographs were taken of the full-body, pronotum and lateral view of the thorax, which were pre-processed to train the AlexNet algorithm. The evaluation was based on the confusion matrix, the accuracy (ten pseudo-replicates) and the confidence interval for each experiment. Results Our study found that the AlexNet can accurately identify mosquito pictures of the genus Aedes, Sabethes and Haemagogus with over 90% accuracy. Furthermore, the algorithm performance did not change according to the body regions submitted. It is worth noting that the state of preservation of the mosquitoes, which were often damaged, may have affected the network’s ability to differentiate between these species and thus accuracy rates could have been even higher. Conclusions Our results support the idea of applying CNNs for artificial intelligence (AI)-driven identification of mosquito vectors of tropical diseases. This approach can potentially be used in the surveillance of yellow fever vectors by health services and the population as well. Graphical abstract

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3